

Pergamon

0040-4039(94)E0794-X

Convenient Preparation of a-Trimethylsilyloxyand a-Hydroxystannanes from Aldehydes

Rama K. Bhatt, Jianhua Ye, and J.R. Falck*

Departments of Molecular Genetics and Pharmacology University of Texas Southwestem Medical Center Dallas. Texas 75235

Keywords: stamylhydrin. tin, chiml induction, irimethyl(tributyistamyl)silane

Abstract: Aldehydes, but not ketones, are converted to α -hydroxystannanes via the corresponding silyl ethers in good to excellent yields by **Bu_dNCN** catalyzed addition of Bu₃SnSiMe₃ and hydrolytic isolation. Modest asymmetric induction was observed using a chiral quaternary ammonium cyanide catalyst.

u-Alkoxystannanes have found numerous synthetic applications, *inter aliu, in the* **generation of** configurationally stable α -alkoxyorganolithium and copper reagents.¹ as precursors to chiral tetraalkylstannanes and secondary alcohols,² and in Lewis acid induced S_E' aldol condensations.³ Recently, we⁴ and others⁵ have exploited α -alkoxystannanes in stereospecific Stille-type crosscouplings mediated by transition metals. The parent α -hydroxystannanes 2 are most commonly prepared by addition of stoichiometric lithium or magnesium stannyl anions to carbonyls⁶ or by hydride reduction of labile acyl stannanes.^{3,7} However, since the aforementioned preparative methodology is not always compatible with base sensitive or polyfunctional substrates, we report herein a mild and convenient synthesis of 2 from aldehydes via the intermediate TMS ether **1 (eq** 1).

$$
R \longrightarrow H
$$

$$
B u_3 Sn-TMS
$$

$$
B u_4 N-CN
$$

$$
B u_4 N-CN
$$

$$
B M M M
$$
 (eq1)

The results ohtained with representative aldehydes are summarized in Table 1 and serve to define the scope of the **transformation. Under the influence of** tetrabutylammonium cyanide (3 mole %), simple aliphatic aldehydes (entries 1 and 2) reacted smoothly with commercial Bu₃SnSiMe₃⁸ (1.5 equiv) in THF at ambient temperature in 2-3 h. Quenching with saturated NH₄Cl solution, extractive isolation and SiO₂ **chromatographic purification afforded 2 and its silylated counterpart 1 in good** to excellent combined yield.⁹ Alternatively, 2 could be obtained as the sole product in comparable yields by in situ hydrolytic desilylation with dilute **acid during work-up. Stannylations in other solvents, e.g., benzene, dichloromethane, acetonitrile, and N,N-dimethylformamide. were characterized by poor conversions.** Likewise, reactions catalyzed by Lewis acids $[BF_{3} \cdot Et_2O, ZnCl_2, Ti(iPro)_4]$ were uniformly unsatisfactory as were additions mediated by Bu₄NF, KCN/18-crown-6, P(NMe₂)₃, Et₃N, and Me₃SiCN. Replacement of Bu₃SnSiMe₃ by Bu₃SnSiMe₂'Bu resulted in a very sluggish reaction even **under forcing conditions and gave low yields of adduct.**

Entry	Aldehyde	Ratio 1/2	Adduct	Rxn Cond Solvent/Temp, OC/Time,h	Isolated Yield(%)
$\mathbf{1}$	CHO Ph'	3:1	OН Ph' SnBu	THF / 23 / 3	82
$\mathbf{2}$	CHO	3:1	OH SnBu ₃	THF / 23/2	80
3	CHO	>50:1	OH SnBu ₃	THF $/ -20/1$	68
4	$l_{\text{Bu}-\text{CHO}}$	>50:1	OН 'Bu' SnBu ₂	THF / -78 / 5	71
5	$-$ (HCHO) $-$	1: >50	OH SnBu ₃ $\bf H$	THF / 23 / 48	80 ²
6	CHO	>50:1	OH SnBu ₃	THF / -78 / 0.3	20
7	H_3CCH_2 ₆ \ddot{C} (CH ₂) ₁₀ CHO	>50:1	OH $\mathsf{H}_3\mathsf{C}(\mathsf{CH}_2)_6\overset{\mathsf{Q}}{\mathsf{C}(\mathsf{CH}_2)_{10}}$ SnBu ₃	THF / -20 / 1	74
8	CHO	4.6:1	QН SnBu ₃	PhH / 10 / 0.6	85
9	CHO F_3C	1: >50	OH SnBu ₃ F_3C OH	PhH / 23 / 24	15
10	CHO MeO	>50:1	SnBu ₃ MeO	PhH / 10 / 0.75	98

Table 1. Preparation of α -Alkoxystannanes from Aldehydes.

"Isolated and characterized as the acetate $(Ac_2O, DMAP, Et_2N, CH_2Cl_2, 23°C, 4 h)$.

Branched aldehydes such as cyclohexanecarboxaldehyde (entry 3) and pivalaldehyde (entry 4) were also well behaved, but in contrast to the preceding examples, gave rise exclusively to α silyloxystannane 1; subsequent hydrolysis led quantitatively to the corresponding α -hydroxy adduct 2. The simplest aldehyde, introduced into the reaction as paraformaldehyde (entry 5), on the other hand, required 48 h for complete reaction and evolved 2 only. Yields for α , ß-unsaturated aldehydes (entry 6) were modest, due primarily to competitive 1,4- addition.⁸ This produced silyl enol ethers of type 3 which in some instances, e.g., in benzene at 10^oC, became the major product (61%). Significantly, cyclic and acyclic ketones were refractory under all conditions. The exploitation of this differential reactivity for the selective functionalization of aldehydes was cogently illustrated in entry 7.

Additions to aromatic aldehydes showed a unique solvent dependency. For instance, betuzaldehyde reacted rapidly in THP at O'C, but the combined yield of 1 **and 2 was relatively low (40- 50%) compared with that in benzene (8596, entry 8). In THF at -78'C. there was a shift in the mode of attack; 1 was isolated in 50% yield along with 40% of the "mixed dimer" 4. A comparison of benxaldehydes with opposite inductive effects (entry 9 vs. 10) revealed the carbonyl carbon experiences an electron deficiency during the rate limiting step which is ameliorated by electron donating substituents.**

Chiral induction was demonstrated using ammonium cyanide salt 5, prepared from R-(+)-Nmethyl- α -phenethylamine,¹⁰ following the general procedure (vide infra) using dimethoxyethane as solvent (eq 2). ¹H NMR analysis of the adduct, following conversion to the Mosher ester [R-(+)-**MTPA, DCC, DMAP, CH₂Cl₂, 23^{*}C], indicated the stannylation achieved 22% ee. Improvements to this modification and theii application to natural products total synthesis am under active investigation.**

General Procedure: To a solution of aldehyde (2 mmol) and Bu₃SnSiMe₃ (3 mmol) in THF or benzene (4 ml) was added a solution of Bu₄NCN (0.06 mmol, 0.1 M in the reaction solvent). After stirring at the temperature and for the time indicated in Table 1, the reaction mixture was quenched with saturated NH₄Cl solution (4 ml), or 1 N hydrochloric acid if only 2 was desired, and extracted with Et₂O $(2 \times 5 \text{ ml})$. The combined ethereal extracts were washed with H₂O $(2 \times 5 \text{ ml})$, brine (5 ml) , and **concentrated under reduced pressure. purification of the residue by flash column chromatography on SiO, using hexane/EtOAc afforded 1 and/or 2,**

Acknowledgement: Supported financially by the USPHS NIH (GM-31278) and the Robert A. Welch Foundation.

References and Notes

- 1. Stil1,W.C.; *Sreekumar,CJ.Am. Chem. Sot.* **1980.102, 1201-1202. Linderman.** R.J.; Griedel, B.D. *J. Org. Chem.* **1991,56,5491-5493.** McGarvey, G.J.; Kiiura, M. *J. Org. Chem.* **1985. SO, 4655-4657.** Chong, J-M.; Mar, E.K. *Tetrahedron 1989.45,7709-7716.*
- **2.** *Ye, J.; Shin, D.-S.; Bhatt, R.K.; Swain, P.A., Falck, J.R. Synlett 1993, 205-206.*
- **3.** M&all, J.A.; Gung, W.Y. *Tetrahedron* **1989,45,** *1043-1052*
- **4.** *Ye, J.; Bhatt, R.K.; Falck, J.R. J. Am. Chem. Soc.* 1994, *116*, 1-5. *Ye, J.; Bhatt, R.K.; Falck,* J.R. *Tetrahedron Lett. 1993.34, 8007-8010.*
- **5.** Linderman, R.J.; Graves, D.M.; Kwochka, W.R.; Ghannam, A.F.; Anklekar, T.V. *J. Am. Chem. Sot.* **1990,112,** 7438-7439.
- **6.** Still, W.C. *J. Am. Chem. Soc.* 1978, 100, 1481-1486.
- **7.** Ghan, P.C.-M.; Chong, J.M. *J. Org. Chem.* 1988.53, 5584-5586.
- **8.** For other synthetic applications of Me₃SiSuBu₃ see, Mori, M.; Kaneta, N.; Isono, N.; Shibasaki, M. *J. Organomet. Chem. 1993,455, 255-260.*
- **9.** Satisfactory spectral data (¹H, ¹³C, MS) were obtained for all stable compounds using chromatographically homogeneous samples.
- 10. Salt 5 was prepared from commercial R-(+)-N-methyl-α-phenethylamine by exhaustive alkylation (EtI, K_2CO_3 , EtOH, 78°C, 24h), ion exchange of the product over Amberlite IRA-400 (CN⁻) eluted with water, and drying in vacuo. ¹H NMR (CDCl₃, 250 MHz): δ 1.41-1.53 (m, 6H), 1.90 (d, 3H, J=7 Hz), 3.07 (s, 3H), 3.23-3.33 (m, H-I), 3.42-3.56 (m, 2H), 3.70-3.78 (m, lH), 4.95 $(q, 1H, J=7Hz)$, 7.46-7.51 (m, 3H), 7.56-7.60 (m, 2H).

(Received in USA 31 March 1994; *accepted 15 April* 1994)